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Variable phase methods for the calculation of the scattering phase shift in non-relativistic, 
quantum mechanical potential scattering are investigated with emphasis on their use for 
negative energies (bound-state region) and general (not necessarily integral) angular momenta. 
Of the various phase methods known to be valid for positive energies (scatering region), some 
remain valid and some become invalid for negative energies. One of the phase methods 
demonstrated to be valid for both positive and negative energies is fast for numerical 
computation of the scattering phase shift and so is useful for phenomenological investigations. 

I. INTRODUCTION 

The variable phase method for the calculation of the scattering phase shift in non- 
relativistic, quantum mechanical scattering theory is approximately 50 years old, but, 
as emphasized by Calogero in this monograph on the technique [ 11, it is a method 
still not widely used and appreciated. The variable phase method, or as we shall 
sometimes call it, the phase-function method, has the advantages: (1) it is simple 
mathematically, (2) it is interpretable in direct physical terms, and (3) it is a powerful 
method for the numerical calculation of the scattering phase shift. These points are 
examined in Calogero’s book and references therein, especially for positive energies 
(the scattering region) and physical, integer values of the angular momentum. In the 
present note we investigate phase-function techniques for the calculation of the 
scattering phase shift for negative energies (the bound-state region) and all, not 
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necessarily integer, angular momenta. In particular, there are three phase-function 
methods which have been studied and applied in the positive energy region, but which 
have not been carefully investigated and applied in the negative energy region. We 
examine the applicability and physical interpretation of these three methods in the 
bound-state region. Our result (for negative energies) is that the first of these methods 
(usually the slowest for numerical computation) remains valid, the second breaks 
down entirely, while the third method (the fastest for numerical computation) requires 
reanalysis and reinterpretation before it can be used. 

A fast and accurate method for the calculation of the scattering phase shift for 
both negative and positive energies is useful because of the trend in physics to treat 
the bound-state and scattering regions as parts of one, unified physical situation. As 
is well known, knowledge of the phase shift in the scattering region yields directly the 
scattering cross section, and other valuable information such as, e.g., the locations 
and widths of all the resonance states .of the system. Perhaps not quite so well known, 
however, is the usefulness of the phase shift in the bound-state region [ 1,2]. For 
positive energies the phase shift is defined as the shift in the argument of the 
asymptotic wave function due to the presence of the scattering potential; this inter- 
pretation remains valid for negative energies except that the phase shift is now 
complex instead of real, and now the asymptotic wave function contains two pieces, 
one growing exponentially with the radial distance and one shrinking exponentially 
with the radial distance, instead of one sinusoidally oscillating piece. The physical 
bound states are those states which have energies such that the growing exponential is 
absent in the asymptotic wave function so that the wave function is normalizable; 
these special energies are the energy eigenvalues of the quantum system. Since the 
phase shift is complex for negative energies, it can determine the relative amounts of 
the growing and shrinking exponentials in the asymptotic wave function. The physical 
bound-state condition, i.e., absence of the growing exponential, is achieved at those 
energies where the imaginary part of the scattering phase shift tends to minus infinity 
] 1, 2 J. Thus, knowledge of the phase shift for negative energies yields immediately the 
system energy eigenvalues by simply noting those energies where the imaginary part 
of the phase shift goes to minus infinity; this procedure can be carried out graphically 
or on a computer. 

II. PHASE FUNCTION FORMALISM 

We summarize in this section the basic formulae of the phase-function method that 
we will use for the calculation of the scattering phase shift [ 11. 

Starting from the radial Schrodinger equation (prime means differentiation with 
respect to r), 

u/(r) + 
[ 

k* - v- I] u,(r) = 0, 
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and the requirement that 

lim r* V(r) = 0, (2) r-o 

it follows that the boundary condition u,(O) = 0 is enough to specify the wave 
function u,(r) up to a multiplicative constant. The scattering phase shift 6, can then 
be defined using the asymptotic behavior of u,(r): 

4(r) - const sin(kr - +1x + 6,). (3) r+cc 

The phase-function method is based on the amplitude function (T,(T) and the phase 
function 6,(r) which are defined in terms of the wave function and its first derivative 
by 

u,(r) = a,(r)[cos G,(r)j,(kr) - sin 6,(r) fi,(kr)], (4) 

u;(r) = ka,(r)[cos d,(r)J(kr) - sin d,(r) n^;(kr)], (5) 

where j,, ti, are the Ricatti-Bessel functions [ 1, 31. Note in particular that (5) does 
not follow from (4) so that (4) and (5) are independent expressions which unam- 
biguously determine a,(r) and 6,(r). Considerations based on Eqs. (l), (3)-(5) then 
give the phase shift 6, in terms of the asymptotic limit of the phase function 6,(r): 

6, = lim 6,(r). 
r-cc (6) 

The amplitude and phase functions, a,(r) and 6,(r), are not the only such functions 
that can be defined. Two other sets, which are useful conceptually and 
computationally and which we use below, are defined by 

u!(r) = a;(r) sin[kr + y,(r)], (7) 

u;(r) = kap(r) cos[kr + y,(r)], (8) 
and 

E,(r) = c&r) sin [ kr + P,(r) 1, (9) 

U;(r) = kc&r) cos[ kr + p,(r)], (10) 

where U;(r) satisfies the radial Schrijdinger equation (1) with V(r) = 0 and the usual 
boundary condition ii,(O) = 0. 

From the above equations, one obtains the corresponding first order, non-linear 
differential equations 

6;(r) = -k-‘V( r )[ cos G,(r)J;(kr) - sin 6,(r) n^,(kr) ]I, (11) 

y;(r) = -k-l 
l(1 + 1) 
z- + 

r 
V(r) 

I 
sin21 kr + y,(r) 1, 

P;(r) = -k- ’ !!k&!L sin*[ kr + P,(r)], (13) 
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with accompanying boundary conditions 6,(O) = y,(O) = p,(O) = 0 and y;(O) = pi(O) = 
-kl/(l+ 1). Since 6,(r) is the phase function associated with the potential V(r) and 
leads asymptotically to the phase shift 6!, inspection of Eqs. (1 l)-( 13) suggests that 
r,(r) is the phase function of the full effective potential Y(r) + 1(1+ 1)/r*, and that 
P,(r) is the phase function of the angular momentum barrier Z(f + 1)/r’. Thus, further, 
one might expect y,(r) and ,f?,(r) to lead asymptotically to a “total” phase shift y, and 
an “angular-momentum-barrier” phase shift p,. This is, in fact, the case in the 
scattering region (E > 0), but such an interpretation is unclear in the bound-state 
region (E < 0), as is discussed in detail in Sections IV and V. 

Finally, the following expressions for the phase functions in terms of the wave 
functions are useful in later discussion: 

6,(r) = tan-’ 
I 

.7,&r) WI - V;(kr) +tr) 
n^,(kr) u;(r) - ki;(kr) u,(r) 1 ’ 

y,(r) = tan-’ 
I 

ku,(r) cos kr - u;(r) sin kr 
ku,(r) sin kr + u;(r) cos kr I ’ 

P!(r) = tan- ’ 
I 

j,(kr) cos kr -j;(kr) sin kr 
j,(kr) sin kr +j;(kr) cos kr I * 

(14) 

(16) 

Note that j,(kr) in (16) is just the tit(r) of (9), (lo), sinceJ,(kr) is the solution of the 
radial Schrodinger equation with V(r) = 0 and zi,(O) = 0. 

III. PHASE SHIFTS IN THE SCATTERING REGION (E > 0) 

In this section we give the three main phase-function calculational techniques for 
obtaining the phase shift 6, in the positive energy, scattering region [ 11. 

For E > 0 (and I > 0), Calogoro shows that the amplitude and phase functions all 
have well-defined limits as r + co. Using the differential equations (1 l)-( 13) together 
with their respective boundary conditions, one finds that 6, is a real constant (the 
value of which depends, of course, upon V(r)), and that 

p, = ;+i B,(r) = - $c, 

y, = ;i+z y,(r) = - $7~ + 6,. 

(17) 

(18) 

Results (17), (18) may also be obtained by using the asymptotic forms of tl[(r) and 
j,(kr) and their derivatives in expressions (15) and (16). The fact that p, = - ifn and 
yI = - $1~ + 6, lends credence to the interpretation of p, and yI as the angular- 
momentum barrier and total phase shifts, respectively, given in Section II; see also 
Eq. (3). 

Thus, immediately, one has two techniques for calculating 6,: (i) integrate (11) 
from r = 0 to r = i such that V(r) N 0 for r > J. Then from (11) it is clear that 6,(r) 
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does not change appreciably beyond J and one can use (6) to get 6,: 6, = S,(i) to a 
high order of accuracy; (ii) integrate (12) from r = 0 to I = ? such that 
V(r) + 1(/ + 1)/r* N 0 for r > r’. Then (12) shows that y,(r) does not change 
appreciably beyond r and one can use (18) to get 6,: y, = - $7~ + 6, ‘v y,(P), again to 
a high order of accuracy. Methods (i) and (ii) both work for phase shift 
computations; however, method (i) requires the evaluation of the Ricatti-Bessel 
functions at each step of the integration, which is very costly especially in the cases 
of non-integral and complex 1, and method (ii) requires integration out to very large r’ 
because /(I + 1)/r* falls off so slowly; this also is impractical in many cases. 

There is a combined method (which we call method (iii)) which contains the 
computational virtues of methods (i) and (ii), but not their weakness: (iii) integrate 
(12) from r = 0 to r = i such that V(r) = 0 for r > i. To a high order of accuracy the 
phase shift is then given by 6, = 6,(t), where 

S,(i) = tan ’ 
I 

cos[ki + y,(i)]j,(k?) - sin[k? + y,(?)]j;(ki) 
cos[ki + y,(i)] n^,(kf) - sin[kr+ y,(i)] n^;(kJ) I * (19) 

(Equation (19) which is exact for all f, follows from (7), (8), and (14).) Thus, in 
method (iii) one does not integrate a long way and one evaluates the Ricatti-Bessel 
functions only once; this method is a fast and accurate method for the numerical 
computation of y, in the scattering region (E > 0). 

IV. THE BOUND-STATE REGION (E < 0): P,(r) 

The formalism and computational procedures summarized in the previous two 
sections require reexamination when applied in the bound-state, negative energy 
region. As an illustration of the “problem” that occurs, we consider in this section the 
angular-momentum phase function P,(r) for E < 0. 

In Section III, we noted for E > 0 that p, = lim,,, P,(r) = - ih. For E < 0 
however, k = in (K real, >0 and E = k* = -K*), and inspection of (13) shows that 
P,(r) tends to -ice as r + co ; i.e., P,(r) is unbounded because 1(1+ 1)/r* does not 
decrease fast enough to subdue the exponential increase of sin*[iKr + y,(r)]. Thus, the 
result p, = - 41~ obtained and easily interpreted for E > 0 does not appear to hold for 
E < 0, at least according to (13). On the other hand, use of the asymptotic approx- 
imation [ 1, 3 ] 

j,(kr) ikrl-r sin(kr - $n), lkrl % 1 (20) 

(which is good for complex kr) in (16) yields p, = lim,,, P,(r) = - jhc. To 
summarize, for E < 0, (13) yields j3, = --ice, while (16) apparently yields /I, = - $1~. 
Thus, two questions are raised: first, since (13) and (16) are equivalent, why do they 
appear to yield different results for /I, for E < O?, and second, if (13) is correct and 
P)(r) really does tend to --ice for E < 0, what is the meaning of P,(r) for negative 
energies? 
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To begin, the contradiction between (13) and (16) on the value of p, is only 
apparent; both expressions actually agree and give /3, = -icz, for E < 0. This can be 
seen by noting that, while (20) is indeed correct, Eq. (16) is a particularly delicate 
combination of solutions, and more terms are required in the asymptotic approx- 
imation for j,(kr). With additional terms included, (20) becomes [ 1, 3 ] 

j,(kr) = sin@ - +r) + 2 cos(kr - $ln) 

+ ($2 

(21) 
- sin(kr - f17r) + “. , 

validforlkrj-+oo (A,=+(4([+j)*-l),A,=& . A, . (4(f + f)’ - 9)). We now use 
(21) in (16) which yields the asymptotic expression for /I,(r) (valid for jkrj -+ co): 

/I,(r) = tan-’ 
sin(-{ln) + [~I,/(kr)~] cos(kr - i/n) sin kr + ... 
cos(- $71) - [A ,/(kr)*] cos(kr - $7~) cos kr + . . . 1 * 

(22) 

This expression is valid for both our cases, and yields immediately 

/I{ = -$n for E > 0, k = k, 

p, = -ico for E < 0, k = iK. 
(23) 

Thus, (13) and (16) agree on /I, for E < 0. 
Before turning to the question of the physical meaning of /I, and /lJr) for E < 0, we 

discuss why /3[ is infinite for negative energies. If we consider, e.g., motion under a 
simple Yukawa potential of the form V(r) = -geuWr/r, then, as is well known [2], the 
phase shift 6, is meromorphic in a strip of the k plane given by )Im k) < puj2. This can 
be seen, e.g., in Eq. (1 l), where the right-hand side contains terms of the form eePr 
e2’*mk’r which are non-vanishing for large r unless IIm kl <p/2. The same 
phenomenon is at work in the /3[(r) equation (13) except that in (13), Z(1+ 1)/r* 
vanishes so slowly that it can never subdue e2”mk’r unless Im k = 0. Thus, in the case 
of the angular-momentum phase function P((r) considered here, the strip in which /II 
is finite and equal to -iIn has zero width, i.e., consists only of the real-k axis. This 
explains result (23). 

What is the physical meaning of the angular-momentum phase function P,(r) and 
phase shift PI in view of the above discussion, especially Eq. (23)? First, if p, is inter- 
preted as the “angular-momentum-barrier phase shift,” it is clear that the angular- 
momentum barrier causes the usual phase shift -$7~ for real k and an infinite phase 
shift for k complex. On the other hand, if the phase shift due to the angular- 
momentum barrier is defined from the argument of the wave function for large r as in 
(20), then this phase shift is -$z for all values of k. Thus, one may conclude that the 
interpretation of p, = lim,, /3,(r) as th e “angular-momentum-barrier phase shift” is 
unclear, at least for negative energies. 
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In spite of the ambiguities in the meaning of /I, for E < 0, the phase function P,(r) 
remains a well-defined object. Expressions (9), (lo), (13), and (16) are all valid for 
complex k, and may, in certain circumstances, be useful. This is shown in the next 
section for y,(r), which is closely related to P,(r) and has many of the same charac- 
teristics. 

V. THE BOUND-STATE REGION: CALCULATION OF THE 
PHASE SHIFT 6, FROM y,(r) 

Which of the three phase-function methods given in Section III for E > 0 are 
available for the calculation of the phase shift 6, in the bound-state, negative energy 
region? First, method (i), based on the phase-function differential equation for 6,(r), 
remains valid for E < 0. As discussed and used by Calogero, method (i) is a powerful 
tool for theoretical analyses of the character of the phase shift. However, for the 
numerical calculation of 6, method (i) is exceedingly slow, especially for non-integral 
values of 1 where the computation ofj,(kr) and fi,(kr) is more difficult. Second, what 
is the validity of method (ii) in the E < 0 region? Method (ii) is based on the use of 
y, = -gr + 6 ,1: y,(Y), where y!(i) is found by integrating the y,(r) differential 
equation (12). But now it is clear from (12) that (exactly as in the p,(r) case for 
E < 0 and for the same reasons) y, = lim,, y,(r) = -im and so for E < 0, yI # 
-iIrt + 6, and cannot be used. Thus, method (ii) is not valid in the negative energy 
region. Finally, what about method (iii) for E > 0; does it remain useful? Since 
method (iii) is also based on the “total” phase function y,(r) one might expect it to 
fail for E > 0 just as did method (ii); interestingly enough, however, it does not fail as 
we now show. 

As discussed in Sections II and III, method (iii) is based on expressions (7), (8), 
(12), (15), and (19) All of these equations remain valid for E < 0, and so method 
(iii) remains a correct procedure for calculating the phase shift S, in the bound-state 
region. This statement is true despite the fact that y,(v) -+,+oo -ice when k has a non- 
zero imaginary part as it does for E < 0. As for the E > 0 case, one uses 6, ‘v S,(i), 
where S,(i) is given by (19), and y[(i) follows from integrating (12). This calculation 
gives 6, to a high order of accuracy provided, of course, that r is chosen such that 
V(r) z 0 for r > r as before. In addition, as discussed in Section IV, for complex k 
one must keep 1 Im kl < 42 (where p is the potential range parameter as, e.g., in 
V(r) = -gepLLr/r) in order that 6, remain defined by method (iii) [2]. 

The expressions for y, K lim,,, y{(r) analogous to (23) for /I, are 

y, = -$r + 6, forE>O, k=k, 

yl = -ico for E < 0, k = ix. 
(24) 

Thus, like /I,, y, has a finite value only on the real-k axis, and this is true for the same 
reason as that in the /3, case, namely, that the 1(Z + 1)/r’ term cannot subdue the 
e2’imklr terms in (12). 
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From the discussion in Sections II and III it appeared that a reasonable inter- 
pretation of y,(r) and y, is a “total” phase function and “total” phase shift, respec- 
tively. Now, however, as in the case of /3, for E < 0, Eq. (24) casts doubt on the 
aptness of the name “total phase shift” for yI, at least for negative energies. 

Apart from the general interest of having a second method for the calculation of 6,, 
the main justification for presenting method (iii) for use in the bound-state region is 
that, when used on a computer, method (iii) is between one and two orders of 
magnitude faster than method (i); this statement is true for both E < 0 and E > 0, 
and is especially true for non-integral 1. This means that in practical calculations a 
given problem may be soluble using method (iii) and insoluble using method (i). 
Numerical examples of complex angular-momentum trajectories derived from phase 
shifts calculated using method (iii) are shown in Ref. 141; selected phase shifts are 
shown also in this reference. Extensive numerical illustrations of scattering phase 
shifts for various potentials are shown in Ref. [S 1; these phase shifts are calculated 
using method (iii) for both positive and negative energies. 

In conclusion, methods (i), (ii), and (iii) of Section III can be used to calculate the 
scattering phase shift 6, in the scattering region E > 0, while only methods (i) and 
(iii) can be used in the bound-state region E ( 0. Method (i) is conceptually cleaner 
than method (iii), while method (iii) is as much as several orders of magnitude faster 
than method (i) when both are used on a computer. 
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